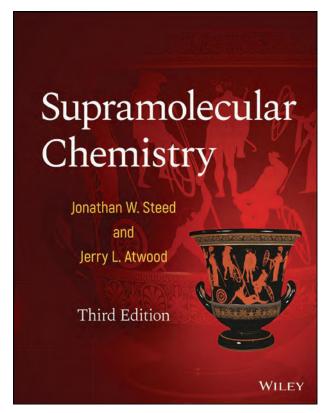
Supramolecular Chemistry 3rd Edition

By Jonathan W. Steed & Jerry L. Atwood

Inorganic Chemistry | Supramolecular Chemistry


A one-stop, comprehensive, and thoroughly updated resource for students, professors, and researchers alike.

Thoroughly revised and updated, the Third Edition of *Supramolecular Chemistry* delivers a comprehensive and integrated approach to this rapidly evolving and quickly expanding field. Distinguished professors and authors Jonathan Steed and Jerry Atwood provide readers with a broad and exhaustive resource that assumes little in the way of prior knowledge of supramolecular chemistry.

Extensive new content on cutting edge research throughout the field including molecular machines and the mechanical bond, mechanochemistry, halogen bonding, and crystal nucleation accompanies full-color imagery and study problems designed to help students understand and apply the principles introduced within the book.

- The latest research and developments reported over the last decade
- A unique "key references" system that highlights crucial reviews and primary literature
- Description of key experimental techniques included in accessible "boxes" for the non-expert
- Exercises and problems for students, complete with online solutions
- Full-color illustrations and imagery designed to facilitate learning and retention of the key concepts and state-ofthe art of the field

Perfect for undergraduate and postgraduate students taking courses on supramolecular chemistry, the Third Edition of *Supramolecular Chemistry* also belongs on the bookshelves of all researchers in this, and any closely related, fields. Academics, in particular postdoctoral students and professors, will benefit significantly from this text.

Print ISBN 9781119582519 Hardcover • 1000 pages • October 2021 List price US\$120.00

THE AUTHORS

Jonathan W. Steed is Professor of Inorganic Chemistry at Durham University. He obtained his Ph.D. at University College London. He is the recipient of the RSC Meldola Medal, Durham's Vice Chancellor's Award for Excellence in Postgraduate Teaching, the Bob Hay Lectureship, and the RSC Corday-Morgan Prize.

Jerry L. Atwood is the Curator's Distinguished Professor at the University of Missouri. He obtained his Ph.D. in 1968 at the University of Illinois. He is the co-founder of the journals Supramolecular Chemistry and the Journal of Inclusion Phenomena. He is the recipient of the Izatt-Christiansen Prize in Supramolecular Chemistry.

Please contact your local Wiley sales representative to place your orders or for any queries.

Supramolecular Chemistry

3rd Edition

TABLE OF CONTENTS

About the Authors Preface to the Third Edition Acknowledgements

About the Front Cover

About the Companion Website

CHAPTER 1 Concepts

1.1 Definition and Development of Supramolecular Chemistry

1.2 Classification of Supermolecule

1.3 Receptors, Coordination, and the Lock and Key Analogy

1.4 Binding Constants

1.5 Cooperativity, Multivalency, and the Chelate Effect

1.6 Preorganisation and Complementarity

1.7 Thermodynamic and Kinetic Selectivity, and Discrimination

1.8 Nature of Supramolecular Interactions

1.9 Solvation Effects

1.10 Supramolecular Concepts and Design

1.11 Practical Applications of Supramolecular Chemistry

Summary

Study Problems

References

CHAPTER 2

The Supramolecular Chemistry

2.1 Biological Inspiration for Supramolecular Chemistry

2.2 Alkali Metal Cations in

2.3 Porphyrins and Tetrapyrrole Macrocycles

2.4 Supramolecular Features of Plant Photosynthesis

2.5 Uptake and Transport of Oxygen by Haemoglobin

2.6 Enzymes and Coenzymes

2.7 Signalling: Neurotransmitters, Hormones, and Pheromones

2.8 DNA and the Genetic Code

2.9 Biochemical Self-Assembly

2.10 Biomineralisation

2.11 Emergence of Life

Summary

Study Problems

References

CHAPTER 3 Cation-Binding Hosts

3.1 Introduction to Coordination Chemistry

3.2 Podands

3.3 The Crown and Lariat Ethers

3.4 The Cryptands

3.5 The Spherands

3.6 Nomenclature of Cation-**Binding Macrocycles**

3.7 Selectivity of Cation Complexation

3.8 Solution Behaviour and Applications of Crowns and Cryptands

3.9 Macrocycle Synthesis: The Template Effect and High Dilution

3.10 Soft Ligands for Soft Metal

3.11 Proton Binding: The Simplest

3.12 Complexation of Organic Cations

3.13 Alkalides and Electrides

3.14 The Calixarenes

3.15 Carbon Donor and π -acid Ligands

3.16 The Siderophores

Summary

Study Problems

Thought Experiment

References

CHAPTER 4

Anion Binding

4.1 Introduction

4.2 Biological Anion Receptors

4.3 Concepts in Anion Host Design

4.4 Cationic Receptors

4.5 Neutral Receptors

4.6 Boron Based Receptors and Lewis Acid Chelates

4.7 Metal-Containing Receptors

4.8 Anion-Binding Helices

4.9 Anion Transport

Study Problems

Thought Experiments

References

CHAPTER 5

Ion-Pair Receptors

5.1 Simultaneous Anion and Cation Binding

5.2 Labile Coordination Complexes and Cages as Anion Hosts

5.3 Receptors for Zwitterions

Study Problems

References

CHAPTER 6

Molecular Guests in Solution

6.1 Molecular Hosts and Molecular

6.2 Intrinsic Curvature: Guest Binding by Cavitands

6.3 Cyclodextrins

6.4 Molecular Tweezers, Clips and

6.5 Cyclophane Hosts

6.6 Constructing a Solution Host from Clathrate-Forming Building Blocks: The Cryptophanes

6.7 Covalent Cages: Carcerands and Hemicarcerands

6.8 Coordination Cages

6.9 Halogen-Bonded Complexes

Study Problems

Thought Experiment

CHAPTER 7 Solid-State Inclusion Compounds

7.1 Nomenclature and Thermochemical Aspects

7.2 Porosity and Gas Sorption

7.3 Clathrate Hydrates

7.4 Urea and Thiourea Clathrates

7.5 Channel Clathrates

7.6 Polarity Formation

7.7 Hydroquinone, Phenol, Dianin's Compound, and the Hexahost Strategy

7.8 Macrocyclic Clathrates

7.9 Covalent Cages

7.10 Gas Sorption by Coordination **Complex Hosts**

Summary

Study Problems

References

CHAPTER 8

Crystal Engineering

8.1 Concepts

8.2 Crystal Nucleation and Growth

8.3 Understanding Crystal Structures

8.4 The Cambridge Structural Database

8.5 Polymorphism

8.6 Co-crystals

8.7 Solid State Transformations

8.8 Crystal Structure Prediction

8.9 Common and Exotic Supramolecular Synthons

8.10 Halogen Bonding

8.11 Bending and Jumping Crystals

Summary

Study Problems

Thought Experiment References

CHAPTER 9

Network Solids

9.1 What are Network Solids?

9.2 Zeolites

9.3 Layered Solids and Intercalates

9.4 In the Beginning: Hoffman Inclusion Compounds and Werner Clathrates

9.5 Coordination Polymers

9.6 Porous Metal-Organic

Frameworks 9.7 Covalent Organic Frameworks

Summary

Study Problem

References

CHAPTER 10

Self-Assembly

10.1 Introduction 10.2 Proteins and Foldamers:

Single-Molecule Self-Assembly 10.3 Biochemical Self-Assembly

10.4 Self-Assembly in

Synthetic Systems: Kinetic and

Thermodynamic Considerations 10.5 Helicates and Helical

Assemblies 10.6 Self-Assembling Coordination Compounds

10.7 Self-Assembly of Closed Complexes by Hydrogen Bonding

10.8 Templated Assembly of Porphyrin Arrays 10.9 Programmed Assembly with

Biomolecules

Summary

Study Problems **Thought Experiment**

References

CHAPTER 11

The Mechanical Bond

11.1 Scope and Importance of Mechanical Bonding and Mechanostereochemistry

11.2 Catenanes and Rotaxanes

11.3 Molecular Knots

11.4 Borromean Rings and Multiply Interlocked Catenanes

11.5 Interpenetrated Cages 11.6 An Unusual Thring

Summary

Study Problem

References

Supramolecular Chemistry

3rd Edition

CHAPTER 12 Molecular Devices and Machines

12.1 Introduction

12.2 Supramolecular Photochemical Devices

12.3 Information and Signals: Semiochemistry and Sensing

12.4 Molecule-Based Electronics

12.5 Molecular Analogues of Mechanical Machines

Summary

Study Problems

References

CHAPTER 13 Biological Mimics and Supramolecular Catalysis

13.1 Introduction

13.2 Cyclodextrins as Enzyme Mimics

13.3 Corands as ATPase Mimics

13.4 Cation-Binding Hosts as Transacylase Mimics

13.5 Metallobiosites

13.6 Enzyme Mimetic Materials

13.7 Ion Channel Mimics

13.8 Supramolecular Catalysis

Summary

Study Problems

Thought Experiment References

CHAPTER 14

Interfaces and Liquid Assemblies

14.1 Order in Liquids

14.2 Surfactants and Interfacial Ordering

14.3 Liquid Crystals

14.4 Polyamorphous Liquids

14.5 Ionic Liquids and Deep

Eutectic Solvents

14.6 Liquid Clathrates14.7 Porous Liquids

Summary

Study Problems

References

CHAPTER 15 Supramolecular Materials

15.1 Introduction

15.2 Dendrimers

15.3 Fractal Assemblies

15.4 Covalent Polymers with Supramolecular Properties

15.5 Self-Assembled Supramolecular Polymers

15.6 Mechanically Interlocked Materials

15.7 Supramolecular Gels

15.8 Polymeric Liquid Crystals

15.9 Biological Self-Assembled Materials

Summary

Study Problems

References

CHAPTER 16

Dynamic Covalent Bonding and Complex Systems

16.1 Chemistry Out of Equilibrium

16.2 Dynamic Combinatorial Libraries

16.3 Self-Replication

16.4 Shapeshifting Molecules

16.5 Dissipative Self-Assembly

Summary

References

CHAPTER 17

Nanochemistry

17.1 When Is Nano Really Nano?

17.2 Nanotechnology: The 'Top-Down' and 'Bottom-Up' Approaches

17.3 Templated and Biomimetic Morphosynthesis

17.4 Nanoscale Photonics

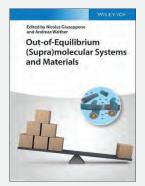
17.5 Microfabrication, Nanofabrication and Soft Lithography

17.6 Assembly and Manipulation on the Nanoscale

17.7 Nanoparticles

17.8 Endohedral Fullerenes, Nanotubes and Graphene

Summary

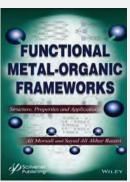

Thought Experiment

References

Index

Information accurate as of September 2021

More titles in Supramolecular Chemistry

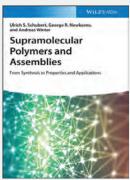


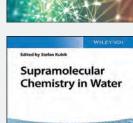
Out-of-Equilibrium (Supra)molecular Systems and Materials

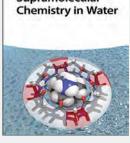
Nicolas Giuseppone & Andreas Walther

9783527346158 ©2021

A comprehensive overview of the synthetic approaches that use molecular and supramolecular bonds in various out-of-equilibrium situations.




Functional Metal-Organic Frameworks


Ali Morsali & Sayed Ali Akbar Razavi

9781119640431 ©2021

Discusses the roles of functional groups on the structure and application of metal organic frameworks (MOFs).

Supramolecular Polymers and Assemblies

Ulrich S. Schubert, George R. Newkome & Andreas Winter

9783527333561

Explores modern characterization methods and new applications in this modern overview of supramolecular polymer chemistry.

Supramolecular Chemistry in Water

Stefan Kubik

9783527344673

Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water.